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Angle–angular-momentum entropic bounds and optimal entropies
for quantum scattering of spinless particles

D. B. Ion and M. L. D. Ion
National Institute for Physics and Nuclear Engineering Horia Hulubei, P.O. Box MG-6, Bucharest, Romania

~Received 18 February 1999!

In this paper theangle–angular-momentum entropic lower and upper boundsare proved by using Tsallis-
like entropies, the Riesz theorem, and the Lagrange multiplier method for the quantum scattering of the
spinless particles. A connection between optimal states and the most stringent entropic bounds on Tsallis-like
entropies in the quantum scattering is established. The results of experimental tests of thestate-independent
angle–angular-momentum entropic boundsas well as of the stringent entropic optimal bounds in pion-nucleus
scattering are obtained by calculations of the scattering entropies from the experimental available pion-nucleus
phase shifts. Comparisons of these results with predictions of theprinciple of minimum distance in the space
of statesare presented. Then it is shown that experimental pion-nucleus entropies are well described by optimal
entropies, and that the experimental data are consistent with theprinciple of minimum distance in the space of
scattering states. @S1063-651X~99!08011-3#

PACS number~s!: 05.30.2d
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I. INTRODUCTION

Over the past two decades there has been an increa
interest@1# in the investigation of quantum entropy. Man
authors~see, e.g., Refs.@2–5#! have reviewed the essenti
properties of various entropy expressions useful in phys
The axiomatic derivation of the Jaynesprinciple of maximum
entropy@6#, as well as of the Kullbackprinciple of minimum
cross-entropy@7#, were presented in Ref.@8#. Moreover, the
entropic uncertainty relations@9#, which are saturated fo
coherent states, were proved by many authors~see, e.g.,
Refs.@1,10#!. All these results on the quantum entropy we
specifically designed to be applicable to extensive syste
A generalization of such results to nonextensive systems
proposed by Tsallis in Ref.@11#, who defined a new form o
entropy ~see also Refs.@12–14#!. On the other hand, the
principle of minimum distance in the space of statesas well
asoptimal statesin the Hilbert space of the scattering amp
tudes, which are analogous to the coherent states from
Hilbert space of the wave functions, were introduced in Re
@15–18#. Therefore, it is natural to investigate a possible co
nection between optimal state dominance@15# and the satu-
ration of some specific entropic lower or upper bounds
the quantum scattering of spinless particles.

In this paper the angle–angular-momentum entro
lower bounds@10# are investigated in a more general form
Sec. II by introducingTsallis-like entropiesfor the quantum
scattering of spinless particles. Hence by using theLagrange
multiplier methodand theRiesz theorem@19#, the stringent
entropic inequalities as well as thestate-independent angle–
angular-momentum entropic lower boundsare proved in
Sec. III for the quantum scattering of spinless particles. T
optimal entropies obtained from theprinciple of minimum
distance in the space of states@15# are presented in Sec. IV
The results of the experimental tests of thestate-independen
angle–angular-momentum entropic boundsas well as of the
stringent entropic optimal bounds in pion-nucleus scatter
are obtained in Sec. V by calculations of the scattering
PRE 601063-651X/99/60~5!/5261~14!/$15.00
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tropies from the experimental availablephase shifts@20–24#.
Comparisons of these results with predictions of theprin-
ciple of minimum distance in the space of states@15# are also
given in Sec. V. Section VI is reserved for discussions a
conclusions. A very short version of this paper was pu
lished in Ref.@25#.

II. INFORMATION ENTROPIES FOR QUANTUM
SCATTERING

A. Some basic definitions

We start with a two-body scattering process

a1b→a1b, ~1!

where, for simplicity,a and b are spin-0 hadrons, andx
5cosu, u being the center of mass scattering angle. L
f (x),xP@21,1# be the scattering amplitude of the two-bod
scattering process~1!. As is well known, if the normalization
of f (x) is chosen such that the differential cross sect
(ds/dV)(x) is given by

ds

dV
~x!5u f ~x!u2, xP@21,1#, ~2!

then the elastic integrated cross sectionsel is given by

sel52pE
21

11 ds

dV
~x!dx52pE

21

11

u f ~x!u2dx52pi f i2.

~3!

Since we will work at a fixed energy, the dependence ofsel
and (ds/dV)(x) and f (x) on this variable was suppresse

Now let H be the Hilbert space of the scattering stat
defined on the intervalS[@21,1#, with the inner product
^•••& and the normi•i given by

^ f ,g&5E
21

11

f ~x!g~x!dx, f ,gPH, ~4!
5261 © 1999 The American Physical Society



e

rin
a

fo

p
ia

e

m

um

es
of

d
us

uct

of

y
ule

ed
e

5262 PRE 60D. B. ION AND M. L. D. ION
i f i25^ f , f &5E
21

11

u f ~x!u2dx, f PH. ~5!

B. Angular entropy Su

The informational angular entropySu of any quantum
scattering states is defined as in Ref.@10# by

Su52E
21

1

dxP~x!ln P~x!, ~6!

whereP(x) is the angular distribution defined in terms of th
differential cross section by

P~x!5
2p

sel

ds

dV
~x!, E

21

1

P~x!dx51 . ~7!

The quantum entropySu @Eq. ~7!# was specifically designed
to be applicable to extensive scattering systems@Eq. ~1!#.
Generalization of this entropy to the nonextensive scatte
can be obtained by defining a kind of entropy similar to th
proposed by Tsallis in Ref.@11# ~see also Refs.@12–14#!.
Hence we define the Tsallis-like angular entropies as
lows:

Su~q!5
1

q21 H 12E
21

1

dx@P~x!#qJ , qPR, ~8!

with the property

lim
q→1

Su~q!5Su~1!5Su . ~9!

C. Angular-momentum entropy SL

Now let us consider the case when the scattering am
tude f (x) of the spinless particles is developed in part
amplitudes as

f ~x!5(
l 50

L

~2l 11! f l Pl~x!, xP@21,1#, f lPC,

~10!

where L11 is the number of partial amplitudesf l , and
Pl(x), l 50,1, . . . ,L, are Legendre polynomials. Then th
Fourier coefficients, or the partial amplitudesf l , are ex-
pressed as

f l5
1

2E21

11

f ~x!Pl~x!dx, f lPC. ~11!

Hence, as in Ref.@10# we define the angular-momentu
entropySL by

SL52(
l 50

L

~2l 11!pl ln pl , ~12!

where the partial probabilitypl are defined by

pl54p
u f l u2

sel
, (

l 50

L

~2l 11!pl51. ~13!
g
t

l-

li-
l

Of course, in this case, the Tsallis-like angular-moment
entropies for the scattering process can be defined as

SL~q!5
1

q21 H 12(
l 50

L

~2l 11!@pl #
qJ , qPR, ~14!

with the property

lim
q→1

SL~q!5SL~1!5SL . ~15!

D. Angle–angular-momentum entropy SuL

The entropies~6! and~12! are defined as natural measur
of the uncertainties corresponding to the distributions
probabilitiesP(x) andpl , respectively. If we are intereste
in obtaining a measure of uncertainty of the simultaneo
realization of the probability distributionsP(x) andpl , then
we must calculate the entropy corresponding to the prod
of these distributions:P(x,l )5P(x)pl . It is easy to verify
that the angle–angular-momentum entropy is given by

SuL52(
l 50

L

~2l 11!E
21

1

dxP~x,l !ln@P~x,l !#5Su1SL .

~16!

In this case the Tsallis-like entropies for the scattering
spinless particles is given by

SuL~q!5
1

q21 S 12(
l 50

L

~2l 11!pl
qE

21

1

dx@P~x!#qD
5Su~q!1SL~q!1~12q!Su~q!SL~q!, qPR,

~17!

with the property

lim
q→1

SuL~q!5SuL~1!5SuL5Su1SL . ~18!

Therefore, the indexqÞ1 controls the degree of entrop
nonextensivity reflected in the pseudoadditivity entropy r
~17!.

III. ENTROPIC INEQUALITIES

A. Angular entropic inequalities

It is interesting here to present the following generaliz
entropic inequalities for the Tsallis-like entropies for th
scattering of spinless particles:

1

q21
@12Kq21~1,1!#<Su~q!<

1

q21
@12212q#

for q.0 ~19!

and

1

q21
@12212q#<Su~q! for q,0. ~20!
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The proof of the lower bound~19! is provided by consid-
ering the condition thatP(x) has, everywhere, a finite mag
nitude, i.e.,

P~x!<P~1!5K~1,1!5
1

2
~Lo11!25

2p

sel

ds

dV
~1!.

~21!

The upper bound~19! as well as the lower bound~20! are
optimal bounds which can be obtained via Lagrange mu
pliers by extremizing the Tsallis-like entropies subject to
normalization constraints~7! and ~13!, respectively.

B. Angular-momentum entropic inequalities

Here the following generalized entropic inequalities f
the Tsallis-like entropies for the scattering of spinless p
ticles are proved:

SL~q!<
1

q21
†12@L11#2(12q)

‡ for q.0, ~22!

1

q21
†12@L11#2(12q)

‡<SL~q! for q,0. ~23!

Next, the upper bound~22! as well as the lower bound
~23! are optimal bounds which can be obtained via Lagra
multipliers by extremizing the Tsallis-like entropies subje
to the normalization constraint~13!, respectively.

Indeed, as an example, here we prove bounds~22! and
~23! via Lagrange multipliers, starting with

£~pl !5
1

q21 H 12(
l 50

L

~2l 11!@pl #
qJ

1lH 12(
l 50

L

~2l 11!plJ →~extremum!, ~24!

wherelPR is a Lagrange multiplier. Then, for extremu
~maximum and minimum!, we have

]£

]pl
52

q

q21
~2l 11!pl

q212l~2l 11!50,

~25!

]2£

]pl]pl 8

52q~2l 11!pl
q22d l l 8"0.

Therefore, we obtain that the solution of Eqs.~18! is given
by the maximum-entropy distribution

$pl
me5@L11#22, l 50/L%, ~26!

in both casesq.0 andq,0.
As we see from Eq.~25!,

]2£

]pl]pl 8

,0 for q.0

and
i-
e

r-

e
t

]2£

]pl]pl 8

.0 for q,0.

Hence forq.0 we obtain the entropic upper bound~20!,
while for q,0 we obtain the entropic lower bound~22!. In
conclusion, the equality holds in the upper bound~20! and
lower bound~22! if and only if $pl ,l 50/L% in Eq. ~12! is the
maximum-entropy distribution~26!.

C. State-independent angle–angular-momentum entropic
lower bound

Here we prove the state-independent entropic low
bound

ln 2<Su1SL . ~27!

A general proof of Eq.~27! can be obtained by applying th
Riesz theorem~see theorem 2.8 from Ref.@19#, p. 102!. In-
deed, by using the relations

F E Pm~x!dxG1/2m

5@11~12m!Su~m!#1/2m

F( ~2l 11!pl
mG1/2m

5@11~12m!SL~m!#1/2m, m5p,q

~28!

from the theorem 2.8~of Ref. @19#!, ~with p→2p and p8
→2q, so thatp211q2152), we obtain the following gen-
eral result.

State-independent(p,q) entropic bound: ~i! Let f

PLp(21,11),1
2 ,p<1, be the scattering amplitude satisf

ing Eq. ~10! with the Fourier coefficients given by Eq.~11!.
If the scattering Tsallis-like entropies are defined by Eqs.~8!
and ~14!, respectively, then the entropic inequality

@11~12q!SL~q!#1/2q

<expH Fp21

2p G ln 2J @11~12p!Su~p!#1/2p ~29!

hold for anyq defined by the relation (1/2p)1(1/2q)51.
~ii ! For any finite sequencef l with finite @11(1

2p)SL(p)#1/2p there is an f PLq(21,11) satisfying Eq.
~10!, for which

@11~12q!Su~q!#1/2q

<expH Fp21

2p G ln 2J @11~12p!SL~p!#1/2p, ~30!

where (1/2p)1(1/2q)51. Hence, in the limitp→1 andq
→1, from Eq. ~29! @or from Eq. ~30!#, by developing in
powers ofDp(Dq52q2Dp/p2) and considering only the
first terms, we obtain the lower bound~27!.

IV. OPTIMAL ENTROPIES

A. Principle of minimum distance in the space of states

It is well known that any optimizing study@34# ideally
involves three steps:~i! The description of the system, b
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which one should know, accurately and quantitatively,
variables of the system as well as how these system varia
interact.~ii ! Finding a unique measure of the system effe
tiveness expressible in terms of the system variables.~iii !
The optimization by which one should choose those val
of the system variables yielding optimum effectiveness.

In attempting to use the optimization theory for analyzi
the interaction of elementary particles, one can reverse
order of these three steps. Then, knowledge of the interac
system can be deduced by assuming that it behaves so
optimize some given measure of its effectiveness, and
the behavior of the system is completely specified by ide
fying the criterion of effectiveness and applying optimizati
to it. This approach is in fact known as describing the syst
in terms of an optimum principle. The earliest optimum pr
ciple was proposed by Hero of Alexandria~125 B.C.! in his
Catoptrics in connection with the behavior of light. Thu
Hero of Alexandria mathematically proved the followin
genuine scientific minimum principle of physics~HPMD!:
When a ray of light is reflected by a mirror, the path actua
taken from the object to the observer’s eye is the shor
path from all possible paths.

Now let us apply the HPMD idea to the behavior of lig
in gravitational fields. Then we can obtain immediately th
according to the HPMD, modified to include the interacti
of light with the gravitational field, light must move on
specific shortest path which is the geodesic.

This very simple optimum principle was recently@15# ex-
tended to quantum physics by choosing ‘‘partial transit
amplitudes’’ as fundamental physical quantities with go
quantum numbers such as charge, angular momentum,
spin, etc. These physical quantities are chosen as sy
variational variables, while the distance in the Hilbert spa
of the quantum states is taken as measure of the system
fectiveness expressed in terms of the system variables.
principle of minimum distance in the space of states is c
sen as variational optimum principle by which one sho
obtain those values of the partial amplitudes yielding op
mum effectiveness. Then it was shown~see again Ref.@15#!
that the predictions based on this new optimum principle
explain the experimental data on hadron-hadron scatte
with high accuracy. In a general form this optimum princip
can be formulated as follows:

Principle of minimum distance in the space of quant
states (PMD–SQS): If D( f ,g)5minFif2gexp(2iF)i5@ifi2

1igi222u^f,g&u#1/2 is the quantum distance between two ar
trary statesf andg of a giving system andh is the quantum
state of the system when the interaction is missing, then
true interacting quantum statef of the interacting system is
that state which posses the shortest distanceD( f ,h) in the
space of interacting states compatible with the constra
imposed by the interaction.

Of course this optimum principle, like the PMD-SQS, c
be formulated in a more general mathematical form by us
the S-matrix theory of the strong interacting systems. Su
generalizations, similar to the PMD-SQS, can be made
any branch of science by introducing specific spaces; e.g
genetics, one can introduce the principle of minimum d
tance in the genetic space, etc.

Now our purpose is to show how to deduce knowled
about the scattering system@Eq. ~1!# by using the
e
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~PMD-SQS! @15#. So, the description of the scattering amp
tude f (x) of system~1! will be given in terms of partial
amplitudes f l ,l 50,1, . . . ,L, by formula ~10!. As system
variables we consider the partial amplitudesf l ,l
50,1, . . . ,L. Now, since the normD( f ,0)5i f i given by
Eq. ~3! is the natural distance in the space of states, a
unique measure of the system effectiveness we can ch
the elastic integrated cross section expressed in terms o
system variables as follows:sel/2p52((2l 11)u f l u2
5i f i2. Then, the behavior of scattering system~1! will be
completely specified by the optimal partial amplitudes o
tained as the solutions of the constrained minimization pr
lem, i.e.,

mini f i , when
ds

dV
~y!5fixed, yP@21,1#,

or equivalently,

minH( ~2l 11!u f l u2

1aF ds

dV
~y!2U( ~2l 11! f l Pl~y!U2G J , ~31!

where f l are the partial amplitudes@see Eqs.~10! and ~11!#,
Pl(y) are the Legendre polynomials, anda is a Lagrange
multiplier.

The unique solution of the minimum norm problems
the form of Eq.~31! can be obtained in an elegant and ge
eral form by the reproducing kernel Hilbert space~RKHS!
method. Therefore, letH be the Hilbert space of the scatte
ing amplitudes defined by the scalar product~4! and norm
~5!. The Hilbert spaceH of the scattering states is a RKHS
the following two properties are fulfilled:~i! There exists a
complex valued functionK(x,y) on S3S, called a reproduc-
ing kernel~RK!, such that:

KyPH ~32!

for any fixedy in S[@21,1#.
~ii ! Ky obeys the reproducing property

Ky~x!5K~x,y!⇒^ f ,Ky&5 f ~y! ~33!

for eachf from H and anyy in S[@21,1#. Ky is the repro-
ducing element from pointy, while the totality of elements
Ky is the RK of the Hilbert spaceH.

The reproducing kernel was introduced by Aronsjain@26#
and Bergman@27#. Its usefulness was demonstrated in ma
fields of mathematics and physics~see also Refs.@16–18#
and @28–31#!.

Now we recall briefly some of the definitions and resu
on optimal states introduced in Refs.@15–18# that are less
known and are used in this investigation. The RKHS has
following useful properties.

~i! The RK, if it exists is unique.
~ii ! Hermitian symmetry:K(x,y)5K(x,y).
~iii ! Autoreproducing properties:

uK~x,y!u2<K~x,x!K~y,y!, iKyi25K~y,y!>0.
~34!
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~iv! If the Hilbert spaceH of the scattering amplitudesf is
a RKHS with a RK denoted byK, then for allf in H and any
y in S,

u f ~y!u<@K~y,y!#1/2i f i or
ds

dV
~y!<

sel

2p
K~y,y!,

~35!

the equality is holding in Eq.~35! if and only if

f ~x!5 f oy~x!5 f ~y!
K~x,y!

K~y,y!
, K~y,y!Þ0 . ~36!

~v! If $Fn% is a complete orthonormal sequence in RKH
then the RK is given by

K~x,y!5( F̄n~x!Fn~y!. ~37!

Hence, as a corollary of properties~35!, we obtain

P~y![
2p

sel

ds

dV
~y!<K~y,y! ~38!

for anyyP@21,1# for which theK(y,y)Þ0, the equality in
Eq. ~38! holding if and only if the scattering amplitudef is
theoptimalscattering amplitude@Eq. ~36!#. Therefore, in or-
der to obtain the concrete expression of the optimal state~36!
we must calculate the reproducing kernel functionK(x,y)
corresponding to scattering amplitudes~10!. In this case it is
easy to verify that~see Ref.@15#! ~a! the scattering amplitude
f (x) is an element of a RKHSH defined on@21,1# if and
only if L,`; and~b! H is a finite (L11)-dimensional sub-
spaceL2@21,1#. Then, according to Eq.~37!, the Hilbert
spaceH possesses a polynomial reproducing kernel given

K~x,y!5
1

2 (
l 50

L

~2l 11!Pl~x!Pl~y!

5
L11

2

PL11~x!PL~y!2PL~x!PL11~y!

x2y
, ~39!

K~y,y!5
1

2 (
l 50

L

~2l 11!Pl~y!Pl~y!

5
L11

2
@ ṖL11~y!PL~y!2 ṖL~y!PL11~y!#,

~40!

whereṖl(y)[dPl(x)/dx.
Indeed, using Eqs.~4! and~10!, we can verify thatK(x,y)

given by Eq.~39! fulfills the reproducing property@Eq. ~33!#.

^ f ,Ky&5E
21

11

dxH( ~2l 11! f l 8Pl 8~x!J
3H 1

2 ( ~2l 11!Pl~x!Pl~y!J
5( ~2l 11! f l Pl~y!5 f ~y!,
,

y

since

E
21

11

dx Pl~x!Pl 8~x!5@2/~2l 11!#d l l 8 .

In the particular casey51 we have the following impor-
tant results~see again Ref.@15#!. If sel and ds/dV(1) are
fixed from experiment, then the number (L11) of partial
amplitudes, in any phase shift analysis must obey the opti
bound

~L11!2>
4p

sel

ds

dV
~1!, ~41!

or, equivalently,

L11>Lo115 integer3H F4p

sel

ds

dV
~1!G1/2J . ~42!

The equality in Eq.~41! holds if and only iff (x) is equal
to the optimal state@Eq. ~36!# for y51, which now is given
as

f o1~x!5 f ~1!
K~x,1!

K~1,1!
5 f ~1!

ṖL11~x!1 ṖL~x!

~L11!2
, ~43!

with L5Lo , respectively.
We note that the model-independent result@Eq. ~41!# in-

cludes, in a more general and exact form, the Rarita-Sch
bound~see Ref.@32#!

~L11!2>sT
2/4pl2sel ,

and also the bound

~L11!2>sT/4pl2.

B. Optimal angular entropy

Now, having obtained the concrete optimal states, the
timal angular entropySu

oy , as well as the corresponding Tsa
lis entropySu

oy(p), are given by

Su
oy52E

21

1 @K~x,y#2

K~y,y!
ln

@K~x,y#2

K~y,y!
dx ~44!

and

Su
oy~p!5

1

p21 H 12E
21

1

dxF @K~x,y#2

K~y,y! G pJ , pPR,

~45!

since

Poy~x!5
@K~x,y#2

K~y,y!
, E

21

1 @K~x,y!#2

K~y,y!
dx51. ~46!

C. Optimal angular-momentum entropy

The optimal angular entropySu
oy , as well as the corre-

sponding Tsallis entropySu
oy(q), are given by
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SL
oy52( ~2l 11!

Pl
2~y!

2K~y,y!
lnF Pl

2~y!

2K~y,y!
G

5 ln@2K~y,y!#2( ~2l 11!
Pl

2~y!

2K~y,y!
ln@Pl

2~y!#

~47!

and the corresponding Tsallis-like entropy

SL
oy~p!5

1

p21 H 12( ~2l 11!F Pl
2~y!

2K~y,y!
G pJ , pPR,

~48!

since

pl
oy5

Pl
2~y!

2K~y,y!
, ( ~2l 11!pl

oy51. ~49!

D. Entropic angle–angular-momentum inequality
for pure states

The angular entropy for the pure states is obtained
using definitions~1!–~3! with the angular distributions o
pure states. For example, for the scattering of the spin
particles, we have

P~x!5
2p

sel

ds

dV
~x!5S l 1

1

2D Pl
2~x!, E

21

1

P~x!dx51.

~50!

Consequently, the angular entropySu is given by

Su
l 52E

21

11S l 1
1

2D Pl
2~x!lnF S l 1

1

2D Pl
2~x!G

5 ln 22 ln~2l 11!2S l 1
1

2D E
21

11

Pl
2~x!ln@Pl

2~x!#,

~51!

while, for the pure l-state,

SL
l 5 ln~2l 11!, pl51/~2l 11!, ~52!

Hence for the pure state we have the state-indepen
angle–angular-momentum entropic inequality

Su
l 1SL

l 5 ln 22S l 1
1

2D E
21

11

Pl
2~x!ln@Pl

2~x!#dx> ln 2,

~53!

which is just inequality~27!, since ln@Pl
2(x)#<0 for any an-

gular momentum 1.

E. Entropic angle–angular-momentum inequality
for optimal states

For optimal states we have
y

ss

nt

Su
oy1SJ

oy5 ln 2K~y,y!

2
1

2K~y,y! (
l 50

L

~2l 11!Pl
2~y!ln@Pl

2~y!#

2E
21

1 @K~x,y#2

K~y,y!
ln

@K~x,y#2

K~y,y!
dx> ln 2

2
1

2K~y,y! (
l 50

L

~2l 11!Pl
2~y!ln@Pl

2~y!#

1 lnS K~y,y!

K~1,1! D , ~54!

since, according to Eq.~34! and using the inequality
K(x,x)<K(1,1), we obtain

2E
21

1 @K~x,y#2

K~y,y!
ln

@K~x,y#2

K~y,y!
dx>2 ln@K~1,1!#. ~55!

F. Optimal entropies as maximum-minimum entropies

Now we discuss in more detail the principle of minimu
distance in the space of state:

mini f i2 when
ds

dV
~1! is fixed. ~56!

The unique solution of problem~56! is given by the optimal
state~43! which is the particular case of the optimal sta
~36! wheny51.

Hence from Eq.~54! for y51, we obtain just the inequal
ity

Su
o11SL

o1> ln 2.

The optimal angular entropy Su
o1 is given by

Su
o152E

21

1 @K~x,1#2

K~1,1!
ln

@K~x,1#2

K~1,1!
dx, ~57!

while the corresponding optimal Tsallis-like entropySu
o1(q)

can be written as

Su
o1~q!5

1

q21 H 12E
21

1

dxF @K~x,1#2

K~1,1! GqJ , qPR ~58!

where

Po1~x!5
@K~x,1#2

K~1,1!
5

@ ṖLo11~x!1 ṖLo
~x!#2

2~Lo11!2
. ~59!

For the optimal angular-momentum entropiesSL
o1 and

SL
o1(q), we obtain

SL
o15 ln@2K~1,1!#5 ln~Lo11!2 ~60!

and
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SL
o1~q!5

1

q21
†12@2K~1,1!#12q

‡5
1

q21
†12@Lo11#2(12q)

‡, ~61!

since

H pl
o15

1

2K~1,1!
for 0< l<Lo andpl

o150 for l>Lo11J ~62!

and

K~1,1!5
1

2
~Lo11!2. ~63!

Now, from comparison of the optimal distributions~62! and~26!, we see that the entropic inequalities~22! and~23! can be
improved up to the following most stringent entropic bounds. Indeed, solving the problems

max~min!$Su~q!,SL~q!,SuL~q!% when sel and
ds

dV
~1! are fixed, ~64!
p

p

ds
a

n

ent

ble

is
the
e

we obtain the following important bounds.
~i! The most stringent entropic bounds on the entro

SL(q), when sel and (ds/dV)(1) are given from experi-
ment, are

SL~q!<SL
o1~q! for q.0, ~65!

SL
o1~q!<SL~q! for q,0. ~66!

~ii ! The most stringent entropic bounds on the entro
Su(q), when sel and (ds/dV)(1) are given from experi-
ment, are

Su~q!<Su
o1~q! for q.0, ~67!

Su
o1~q!<Su~q! for q,0. ~68!

~iii ! The most stringent entropic bounds onSuL(q) when
sel and (ds/dV)(1) aregiven from experiment, are

SuL~q!<SuL
o1~q! for q.0, ~69!

SuL
o1~q!<SuL~q! for q,0, ~70!

whereSu
o1(q), SL

o1(q), andSuL
o1(q) are given by Eqs.~57!–

~61!, and

SuL
o1~q!5Su

o1~q!1SL
o1~q!1~12q!Su

o1~q!SL
o1~q!, qPR.

~71!

A general proof of the stringent entropic optimal boun
~65!–~70! can be obtained immediately by observing th
these bounds are singular solutions (l050) @33# of the fol-
lowing extremum problems:

£5H l0SA~q!1l1F sel

4p
2( ~2l 11!u f l u2G

1l2F ds

dV
~1!2U( ~2l 11! f lU2G J→extremum,

~72!
y

y

t

whereSA(q)[$Su(q),SL(q),SuL(q)%, respectively.
Indeed, the proof thatl050 in Eq. ~72! is evident since

we proved that there exists a solution@Eq. ~43!# for the mini-
mum distance problem~56! in the space of states whe
(ds/dV)(1) is fixed. The equality holds in bounds~65!–
~70! if and only if the scattering amplitudef (x) of the quan-
tum scattering~1! ~see Sec. II! is given by the optimal state
~43!.

V. EXPERIMENTAL TESTS

A. Experimental tests of the state-independent†u,L ‡ entropic
bounds

For a numerical investigation of our state-independ
@u,L# entropic bounds~27!, ~29!, and ~30!, is interesting to
calculate the entropies~6!, ~12!, and ~16! by reconstruction
of the pion-nucleus scattering amplitudes using the availa
experimental phase-shifts@20–24# for the p0-4He, p0-12C
andp0-16O, p0-40Ca scatterings. The results obtained in th
way are presented in Table I and Fig. 1 as functions of
pion laboratory kinetic energyT. In the nonextensive cas
pÞ1, we rewrote the entropic inequalities~29! and ~30! in
terms of the test functionsYuL(p) andYLu(p) as

YuL~p![
@11~12p!Su~p!#1/2p

@11~12q!SL~q!#1/2q
>expH F12p

2p G ln 2J
~73!

and

YLu~p![
@11~12p!SL~p!#1/2p

@11~12q!Su~q!#1/2q
>expH F12p

2p G ln 2J
~74!

for any 1/2,p<1, and q is defined by (1/2p)1(1/2q)
51. Moreover, bounds~73! and ~74! can be combined to
obtain the following important@u,L# entropic lower bound
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TABLE I. The experimental values ofSu , SL , Lo , andLme, andL calculated by using the experiment
pion-nucleus phase shifts from Refs.@20–24#.

Pion-nucleus T Su SL Su1SL Lme Lo

scattering ~MeV! Eq. ~6! Eq. ~12! Eq. ~69! Eq. ~42!

p0-4He 25.0 0.295 1.342 1.637 0 0
51.0 0.399 1.471 1.870 1 0
60.0 0.414 1.507 1.921 1 0
68.0 0.416 1.543 1.959 1 0
75.0 0.406 1.580 1.986 1 0
90.0 0.342 1.676 2.018 1 1

110.0 0.152 1.836 1.988 1 1
130.0 20.158 2.017 1.859 1 1
150.0 20.444 2.139 1.695 1 2
180.0 20.774 2.269 1.495 2 2
220.0 21.037 2.406 1.369 2 2
240.0 21.121 2.465 1.344 2 2
260.0 21.167 2.504 1.337 2 3

p0-12C 30.0 0.596 1.256 1.852 0 0
50.0 0.305 1.998 2.303 1 1
75.6 20.376 2.262 1.886 2 2
80.0 20.499 2.274 1.776 2 2

100.0 20.658 2.404 1.746 2 2
148.0 21.421 2.888 1.467 3 3
162.0 21.546 2.989 1.444 3 3
226.0 21.790 3.297 1.507 4 4
486.0 22.608 4.051 1.443 6 7
584.0 22.949 4.360 1.411 7 8
662.0 23.145 4.609 1.465 9 9
672.0 23.168 4.638 1.469 9 10
766.0 23.210 4.882 1.672 10 10
870.0 23.058 5.123 2.065 11 11

p0-16O 40.0 0.584 1.686 2.270 1 0
50.0 0.310 2.011 2.321 1 1
79.0 20.772 2.479 1.708 2 2

114.0 21.277 2.806 1.528 3 3
162.0 21.756 3.216 1.460 3 4
240.0 22.118 3.610 1.493 5 5
342.0 22.423 3.916 1.494 6 6

p0-40Ca 30.5 0.567 1.329 1.896 0 0
50.0 20.416 2.569 2.154 2 2
64.8 20.978 2.786 1.808 3 3
80.0 21.371 2.982 1.611 3 3

115.5 21.728 3.381 1.653 4 4
116.0 21.698 3.376 1.677 4 4
130.0 21.925 3.534 1.609 4 5
140.0 22.166 3.662 1.496 5 5
160.0 22.322 3.816 1.494 5 6
163.3 22.226 3.801 1.575 5 6
180.0 22.402 3.938 1.536 6 6
200.0 22.509 4.051 1.542 6 7
230.0 22.586 4.195 1.609 7 7
241.0 22.591 4.238 1.647 7 7
292.5 22.739 4.458 1.719 8 8
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YuL~p!YLu~p![
@11~12p!SuL~p!#1/2p

@11~12q!SuL~q!#1/2q

>expH F12p

2p G ln 4J ~75!

for any 1/2,p<1, and q is defined by (1/2p)1(1/2q)
51, whereSuL(p) andSuL(q) are given by relations of form
~17!: SuL(r )5Su(r )1SL(r )1(12r )Su(r )SL(r ), r 5p, and
qPR.

Therefore, for the nonextensive casepÞ1, in Figs. 2–4
we present the experimental values of the test functi
YuL(p) and YLu(p) for p50.6 (q53) and 0.8 ~or q
54/3), as well as forYuL(p)YLu(p), for p50.7 (q57/4)
and 0.9 (q59/8), respectively, as functions of the pion k
netic energyT, for all the p014He→p014He, p0112C
→p0112C, p0116O→p0116O, p0140Ca→p0140Ca
scatterings. Moreover, in Figs. 5~a!–5~d!, the experimental
values of entropySuL @Eq. ~16!# as well as those of the tes
functionsYuL(p) and YLu(p) and YuL(p)YLu(p) are pre-
sented as functions of the optimal angular momentumLo
which is obtained from the same phase shifts@20–24# by
formula ~46!. From Figs. 1–5 we see that the@u,L# entropic
lower bound@Eq. ~27!#, as well as the@p,q# entropic in-
equalities~29! and~30! in their equivalent forms@Eqs.~73!–
~75!# are clearly experimentally verified with high accurac

FIG. 1. ~a! The experimental entropiesSuL 5Su1SL , calcu-
lated by using Eqs.~6! and~12! and the experimentalp0-4He phase
shifts from Refs.@20–24#, are plotted as functions of pion kineti
energyT. ~b! The experimental entropiesSuL5Su1SL , calculated
by using Eqs.~6! and~12! and the experimentalp0-12C phase shifts
from Refs.@20–24#, are plotted as functions of pion kinetic energ
T. ~c! The experimental entropiesSuL5Su1SL , calculated by using
Eqs. ~6! and ~12! and the experimentalp0-16O phase shifts from
Refs.@20–24#, are plotted as functions of pion kinetic energyT. ~d!
The experimental entropiesSuL5Su1SL , calculated by using Eqs
~6! and ~12! and the experimentalp0-40Ca phase shifts from Refs
@20–24#, are plotted as functions of pion kinetic energyT.
s

.

B. Experimental tests of principle of minimum distance
in space of states

The analytic expressions of the optimal probability dist
butionsPo1(x) @Eq. ~59!#, corresponding to the optimal stat
~43!, are presented in Table II. The values of optim
(Su

o1 ,SL
o1) entropies for the scattering of spinless partic

are obtained by numerical integration and direct from E
~57! and ~60!, respectively. These values are presented
Table III for 0<Lo<25. In Figs. 6 and 7, the experiment
values of entropiesSu andSL as functions of the pion kinetic
energy are compared with the predictionsSu

o1 andSL
o1 of the

principle of minimum distance in the space of states@15#.

FIG. 2. ~a! The experimental tests of the@u,L# state-
independent entropic lower bounds~73! and~74! for the nonexten-
sivity index p50.8, calculated by using Eqs.~6! and ~12! and the
experimentalp0-4He phase shifts from Refs.@20–24#. ~b! The ex-
perimental tests of the@u,L# state-independent entropic lowe
bounds~73! and ~74! for the nonextensivity indexp50.8, calcu-
lated by using Eqs.~6! and~12! and the experimentalp0-12C phase
shifts from Refs.@20–24#. ~c! The experimental tests of the@u,L#
state-independent entropic lower bounds~73! and~74! for the non-
extensivity indexp50.8, calculated by using Eqs.~6! and~12! and
the experimentalp0-16O phase shifts from Refs.@20–24#, respec-
tively. ~d! The experimental tests of the@u,L# state-independen
entropic lower bounds~68! and ~69! for the nonextensivity index
p50.8, calculated by using Eqs.~6! and~12! and the experimenta
p0-40Ca phase shifts from Refs.@20–24#. The hatched region is
excluded from the physical domain due to the entropic low
bounds~68! and ~69!, respectively.
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From Figs. 6 and 7 we see that the experimental scatte
entropies (Su ,SL) for the p0-4He, p0-12C, and p0-16O,
p0-40Ca scatterings are well described~the full and dotted
curves! by the optimal entropies~57! and~60!. These entro-
pies correspond to the optimal scattering state@Eq. ~43!#.
Clearly, the fact that the experimental entropies do not
pend significantly on the atomic numberA is a direct conse-
quence of the optimal state dominance, since in this case
entropies of all hadron nuclei as a function of variableL0
must be concentrated around the optimal values~57!–~60!
given in Table III.

Now, in order to see why the experimental entropies
well described by the optimal (Su

o1 ,SL
o1) entropies~57! and

~60!, we observe that the entropySL @Eq. ~12!# is similar to

FIG. 3. ~a! The experimental tests of the@u,L# state-
independent entropic lower bounds~73! and~74! for the nonexten-
sivity index p50.6, calculated by using Eqs.~6! and ~12! and the
experimentalp0-4He phase shifts from Refs.@20–24#. ~b! The ex-
perimental tests of the@u,L# state-independent entropic lowe
bounds~73! and ~74! for the nonextensivity indexp50.6, calcu-
lated by using Eqs.~6! and~12! and the experimentalp0-12C phase
shifts from Refs.@20–24#. ~c! The experimental tests of the@u,L#
state-independent entropic lower bounds~73! and~74! for the non-
extensivity indexp50.6, calculated by using Eqs.~6! and~12! and
the experimentalp0-16O phase shifts from Refs.@20–24#. ~d! The
experimental tests of the@u,L# state-independent entropic lowe
bounds~73! and ~74! for the nonextensivity indexp50.6, calcu-
lated by using Eqs.~6! and ~12! and the experimentalp0-40Ca
phase shifts from Refs.@20–24#.
ng

-

he

e

the Boltzmann entropy with a maximum value given by t
logarithm of the number of optimal states. Indeed, from E
~64! we haveSL<SL

o15 ln@2K(1,1)#, where 2K(1,1)5((2l
11)5(Lo11)2 is the number of optimal scattering stat
participating at the scattering process. This result allows
to conclude that the optimal state@Eq. ~43!# is the state of
equilibrium of the angular-momenta channels considered
a quantum statistical ensemble. Hence, the optimal ang
distributionPo1(x) @Eq. ~59!# can be considered as a sign
ture of this equilibrium distribution of theL channels. Also,
from Figs. 6 and 7, we see that the experimental values
(Su ,SL) entropies for the pion-nucleus scatterings are s
tematically described by the optimal entropies (Su

o1 ,SL
o1)

practically at all available pion kinetic energies. In this sen
the results obtained here can also be considered as ex

FIG. 4. ~a! The experimental tests of the state-independent
tropic lower bounds~75! for nonextensivity indexesp50.9 and 0.7,
calculated by using Eqs.~6! and~12! and the experimentalp0-4He
phase shifts from Refs.@20–24#. ~b! The experimental tests of th
state-independent entropic lower bounds~75! for nonextensivity in-
dexesp50.9 and 0.7, calculated by using Eqs.~6! and~12! and the
experimentalp0-12C phase shifts from Refs.@20–24#. ~c! The ex-
perimental tests of the state-independent entropic lower bounds~75!
for nonextensivity indexesp50.9 and 0.7, calculated by using Eq
~6! and ~12! and the experimentalp0-16O phase shifts from Refs
@20–24#. ~d! The experimental tests of the state-independent
tropic lower bounds~75! for nonextensivity indexesp50.9 and 0.7,
calculated by using Eqs.~6! and~12! and the experimentalp0-40Ca
phase shifts from Refs.@20–24#.
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mental signatures for the validity of the principle of min
mum distance in the space of scattering states, even
crude form@15#. The extension of the optimal state analys
to the generalized nonextensive statistics case (qÞ1) ~see
Refs.@11–13#!, as well as a test of the entropic inequaliti
~29! and ~30! and ~64!–~66! for qÞ1, can be obtained in
similar way by using the following nonextensive optimal e
tropies~58! and ~61!.

C. Experimental test of the principle of maximum entropy

Now let us return to the maximum entropy distributio
~26!, and let us define and calculateLme according to the
principle of the maximum~Boltzman-like! entropySL @Eq.
~12!#. If we considerSL5SL

max5ln$(Lme11)2%, we have

Lme5 integer3$exp~SL/2!21%. ~76!

On the other hand, in Sec. IV we proved the general string
upper bound@Eq. ~65!# from which, forq51, we obtain

SL< ln$~Lme11!2%5SL
o15 ln$~Lo11!2%5SL

max. ~77!

FIG. 5. ~a! The scaling property of the entropiesSuL5Su1SL

@Eq. ~16!# as a function of the optimal angular momentumLo given
by Eq.~42!. ~b! The scaling properties of the test functionsYuL @Eq.
~73!# andYLu @Eq. ~74!# as functions of optimal angular momentu
Lo @Eq. ~42!# for the nonextensivity indexp50.8. ~c! The scaling
properties of the test functionsYuL @Eq. ~73!# andYLu @Eq. ~74!# as
functions of optimal angular momentumLo @Eq. ~42!# for the non-
extensivity indexp50.6. ~d! The scaling properties of the test fun
tionsYuLYLu @Eq. ~75!# as functions of optimal angular momentu
Lo @Eq. ~42!# for nonextensivity indexesp50.9 and 0.7, respec
tively.
a

nt

Therefore, an experimental consistent test of the principle
maximum entropy can be obtained not only by testing
entropic upper bound~77!, as is shown in Fig. 8~a!, but also
by a test of the equality

Lme5Lo5 integer3F lnF4p

sel

ds

dV
~1!G21G . ~78!

Indeed, using the experimental values ofSL from Table I,
we calculate the values of the angular momentumLme.

TABLE II. The optimal angular distributionsP01(x) for the
scattering of spinless particles, calculated by using Eq.~59!.

L0 P01~x!5
@K~x,1!#2

K~1,1!

0 1/2

1 (113x)2/8
2 (2112x15x2)2/8
3 (23215x115x2135x3)2/128
4 (3212x242x2128x3163x4)2/128
5 (5135x270x22210x31105x41231x5)2/512
6 (25130x1135x22180x32495x41198x51429x6)2/512
7 (2352315x1945x213465x323465x429009x5

13003x66435x7)2/32768
8 (352280x21540x213080x3110010x428008x5

220020x615720x7112155x8)2/32768
9 (631693x22772x2212012x3118018x4154054x5

236036x6287516x7121879x8146189x9)2/131072
10 (2631630x14095x2210920x3240950x4149140x5

1139230x6279560x72188955x8141990x9

188179x10)2/131072
11 (223123003x115015x2175075x32150150x4

2510510x51510510x611385670x72692835x8

21616615x91323323x101676039x11)2/2097152
12 (23122772x220790x2169300x31294525x42471240x5

21492260x611279080x713357585x821492260x9

23432198x101624036x1111300075x12)2/2097152

TABLE III. The optimal entropiesSL
01, Su

01, andSL
011Su

01, cor-
responding to different optimal angular momentaLo , for the scat-
tering of spinless particles.

L0 Su
o1 SL

o1 Su
o11SL

o1 L0 Su
o1 SL

o1 Su
o11SL

o1

0 0.693 0 0.693 13 22.970 5.278 2.308
1 0.128 1.386 1.514 1423.098 5.416 2.318
2 20.385 2.197 1.812 1523.219 5.545 2.326
3 20.806 2.773 1.966 1623.334 5.666 2.333
4 21.158 3.219 2.061 1723.442 5.781 2.339
5 21.460 3.584 2.124 1823.544 5.889 2.345
6 21.722 3.892 2.170 1923.641 5.992 2.351
7 21.955 4.159 2.204 2023.734 6.089 2.355
8 22.164 4.394 2.231 2123.823 6.182 2.360
9 22.353 4.605 2.253 2223.908 6.271 2.363

10 22.526 4.796 2.270 2323.989 6.356 2.367
11 22.685 4.970 2.285 2424.068 6.438 2.370
12 22.832 5.130 2.298 2524.143 6.516 2.373
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These values are compared in Table I with the experime
values of the optimal angular momentumLo calculated from
the pion-nucleus phase shifts@20–24#. As we can see from
Table I, from a total number of 49 pion-nucleus experimen

Lme5Lo in 34 ~or 69.4%! experiments, ~79!

Lme5Lo21 in ten~or 20.4%! experiments, ~80!

FIG. 6. ~a! The experimental entropiesSu andSL andSu2SL as
functions of pion kinetic energyT, calculated by using Eqs.~6! and
~12! and the experimental pion-nucleus phase shifts from R
@20–24#. The experimental results are compared with the optim
state predictions~57! ~dotted curve! and ~60! ~full curve!, respec-
tively. ~b! The experimental entropiesSu and SL and Su2SL as
functions of pion kinetic energyT, calculated by using Eqs.~6! and
~12! and the experimental pion-nucleus phase shifts from R
@20–24#. The experimental results are compared with the optim
state predictions~57! ~dotted curve! and ~60! ~full curve!, respec-
tively. ~c! The experimental entropiesSu and SL and Su2SL as
functions of pion kinetic energyT, calculated by using Eqs.~6! and
~12! and the experimental pion-nucleus phase shifts from R
@20–24#. The experimental results are compared with the optim
state predictions~dotted curves!. ~d! The experimental entropiesSu

andSL andSu2SL as functions of pion kinetic energyT, calculated
by using Eqs.~6! and~12! and the experimental pion-nucleus pha
shifts from Refs.@20–24#. The experimental results are compar
with the optimal state predictions~dotted curves!.
al

,

and

Lme5Lo11 in five ~or 10.2%! experiments. ~81!

Therefore, within the limit of aDL5Lme2Lo50,61, Lme is
described with a high accuracy byLo . Hence, by using the
available experimental pion-nucleus phase shift analy
@20–24#, we illustrated the exact saturation of the entrop

s.
l

s.
l

s.
l

FIG. 7. ~a! The scaling properties of the experimental entrop
Su and SL , calculated by using Eqs.~6! and ~12! and the experi-
mental pion-nucleus phase shifts@20–24#, are compared with the
optimal state predictions~57! ~dotted curve! and ~60! ~full curve!,
respectively.~b! The scaling properties of the experimental entr
piesSu1SL , calculated by using Eqs.~6! and ~12! and the experi-
mental pion-nucleus phase shifts@20–24#, are compared with the
optimal state prediction~57! ~full curve!. The black region is ex-
cluded from the physical domain due to the entropic inequalit
ln 2<Su1SL<ln@(8p/sel)(ds/dV)(1)#.

FIG. 8. ~a! Experimental tests of the entropic bounds: 0<SL

<SL
o1 . The experimental data are taken from Tables I and III.~b!

Experimental tests of the entropic bounds: ln 2-SL
o1<Su<Su

o1 . The
experimental data are taken from the Tables I and III.~c! Experi-
mental tests of the entropic bounds: ln 2<Su1SL<Su

o11SL
o1 . The

experimental data are taken from Tables I and III.
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upper bound@Eq. ~77!# @see Fig. 8~a!#. Now in Fig. 8~b! we
present an experimental test of the principle of maxim
entropySu . Then, we see that the upper bound

Su<Su
o1 , ~82!

which is the particular case of the general upper bound@Eq.
~67!#, is also verified experimentally with high accuracy.

D. Experimental tests of the†u,L ‡ entropic uncertainty
relations

If each of the probability entropiesSu , SL , and SuL ,
defined by Eqs.~6!, ~12!, and ~16!, is interpreted as natura
measure of the uncertainty in the realization of the proba
ity distributions $P(x),xP@21,11#% @Eq. ~7!#, $pl ,l
P@0,L#% @Eq. ~13!# and joint probability distribution
$P(x)pl , xP@21,11#, l P@0,L#%, respectively, then the
@u,L# entropic lower bound@Eq. ~27!# can be interpreted a
state-independent@u,L# entropic uncertainty relations
Hence, using this bound and the general entropic up
bounds@Eq. ~69!#, in the limit q51, we obtain

ln 2<Su1SL<Su
o11SL

o1 . ~83!

In Fig. 8~c! we present an experimental verification of th
important result in pion-nucleus scatterings. According to
inequality~83!, the uncertainty in the realization of the join
probability distribution$P(x)pl , xP@21,1# and l P@0,L#%
is strongly limited by

~optimal entropic uncertainty![Su
o11SL

o1 , ~84!

which cannot be higher than a value given by ln@2(Lo11)2#
5ln@(8p/sel)(ds/dV)(1)#.

The entropic uncertainty relations~see Refs.@1,9,10#! rep-
resent no generalization of the standard relation but, in p
ciple, a formulation using the entropy as a natural measur
the uncertainty of probability distributions. If we define th
statistical entropic variances as

Du5exp~Su!, D l 5exp~SL!, ~85!

Dx and D l , the entropic@u,l # uncertainty relations, can b
written in the form

2<DuD l<Duo1D l o1<
8p

sel

ds

dV
~1!. ~86!

Practical applications of the entropic uncertainty relations
considerably difficult for the reason that the entropy can
be easily estimated in experimental practice. However, w
the aid of the upper bound@Eq. ~86!#, we can obtain a rela
tively good estimation of the uncertainty of joint experime
tal @u,L# probability distributions.

VI. DISCUSSIONS AND CONCLUSIONS

The results presented in this paper are valid for stro
hadron-hadron, hadron-nucleus, or nucleus-nucleus sca
ings for spinless hadrons and only when the electromagn
scattering contributions are subtracted from the experime
data. However, with specific modifications of the scatter
l-
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-
of
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h
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amplitude@Eq. ~10!# @by adding the Coulombian amplitud
f C(x) as well as by replacing each partial amplitudef l by
f l exp$isl%, wheres l are the electromagnetic phase shift#,
the methods and results obtained in this paper can be
tended to the general case when electromagnetic scatte
contributions are not substracted. Moreover, in the case
applications to hadron-nucleus~with atomic numberZ and
mass numberA) scattering and nucleus-nucleus scattering
Z dependence of the experimental entropies~6! and ~12! is
expected to be observed only as a consequence of a viola
of the charge independence of the nuclear forces, while thA
dependence of these entropies can observed explicitly o
implicitly included via the optimal cutoff parameterLo @see
Eqs.~21! and ~42!#. The main results obtained in this pap
can be summarized as follows.

~i! The information entropiesSu , SL , and SuL , defined
by Eqs.~6!, ~12!, and~16!, are investigated in a more gener
form by introducing the Tsallis-like entropies@Su(q), SL(q),
andSuL(q) for qPR# for the quantum scattering of spinles
particles@see definitions in Sec. II, and Eqs.~8!, ~14!, and
~17!#. The values of these entropies can be calculated
numerical integration or directly from the available mode
independent amplitude analyses. Here numerical experim
tal values of the (Su ,SL) entropies for the quantum
(p0-4He, p0-12C, p0-16O, andp0-40Ca) scatterings, calcu
lated on basis of the pion-nucleus phase shifts@20–24#, are
presented in Table III in both extensiveq51 and nonexten-
sive qÞ0 cases.

~ii ! The general state-independent@u,L# entropic in-
equalities~29! and ~30! for the Tsallis-like entropiesSu(q),
SL(q), andSuL(q), for qPR, are proved in Sec. III by using
the Riesz theorem~see theorem 2.8 in Ref.@19#, p.102!. Re-
sults of numerical tests of state-independent@u,L# entropic
lower bounds are presented in Sec. V in Figs. 1–4, while
scaling properties of the test functions are illustrated in F
5.

~iii ! The optimal entropiesSu
oy(q) and SL

oy(q), corre-
sponding to the optimal state~36!, are expressed in terms o
reproducing kernels in Sec. IV@see Eqs.~44!–~49!#. In par-
ticular ~casey51), the entropiesSu

o1(q) andSL
o1(q), corre-

sponding to solution~43! of the principle of minimum dis-
tance in the space of states in the form of Eq.~56! ~see Ref.
@15#!, are given by Eqs.~57!–~63! and in numerical form in
Table III. In Figs. 6 and 7, we show that the experimen
values of (Su ,SL) entropies for pion-nucleus scatterings a
systematically described by the optimal entropies (Su

o1 ,SL
o1)

practical at all available pion kinetic energies. Hence th
results can be considered as experimental confirmation
the validity of the principle of minimum distance in th
space of scattering states even in a crude form@15#. More-
over, in Table I, we also illustrated numerically that

Lo5Lme5exp~SL/2!21 within DL50,61. ~87!

In this sense, we can claim that by the validity of Eq.~87! we
established a close connection between the principle
maximum entropy and the principle of minimum distance
the space of states in the form of Eq.~56!.

~iv! By using the Lagrange multiplier method, in Sec. I
we proved the most stringent optimal entropic bounds~65!–
~70! which are expressed in terms of optimal entropies~58!
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and~61!. In the limiting caseq51, these results allow us t
obtain the bounds~77! and ~82!, which are experimentally
investigated in Figs. 8~a! and 8~b!, respectively.

~v! We proved not only the state-independent entro
uncertainty@Eq. ~27!#, but also a general upper bound on t
entropic uncertainty of the angle–angular-momentum jo
distribution of the quantum scattering of spinless particles
the particular caseq51, we obtain, the upper bound~83!,
which is expressed in terms of the optimal entropic unc
tainty @Eq. ~84!#. This important result is experimentall
verified with high accuracy in Fig. 8~c!.

It is important to note that all results of this paper can
extended to the scattering of particles with arbitrary spins
using the results of Refs.@10,16–18#. Moreover, using the
RKHS methods and basic ideas contained in this paper, s
lar results can also be obtained for the particle produc
phenomena including all kinds of~strong, electromagnetic
weak, gravitational, etc.! interactions. This statement i
in
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clearly based on the following important facts:~a! The
spaces of physical states are in general normed linear sp
~b! The solutions of the minimum constrained norm~PMD-
SQS! problems are expressible in terms of reproducing k
nels of the RKHS of the system interacting states.~c! The
optimal states, obtained via the PMD-SQS, allow us to int
duce the optimal distributions of formP(x)5@K(x,y)#2/
K(y,y) and$pl

o% optimal distributions for the correspondin
Fourier components. All such results can be used for
definition of specific Tsallis-like entropies, and to obtain t
entropic lower and upper bounds in terms of the optim
states derived via the principle of minimum distance in t
space of states~PMD-SQS!. Finally, we believe that the re
sults obtained here are encouraging for further investigati
of entropic uncertainty relations as well as the principle
minimum distance in the space of states, not only in elem
tary particle physics but also in other domains of scien
such as in genetics, biology~see, e.g., Ref.@35#!, etc.
s.
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